On evasion attacks against machine learning in practical settings

Lujo Bauer
Professor, Electrical & Computer Engineering + Computer Science
Director, Cyber Autonomy Research Center

Collaborators: Mahmood Sharif, Sruti Bhagavatula, Mike Reiter (UNC), ...
Machine Learning Is Ubiquitous

- Cancer diagnosis
- Predicting weather
- Self-driving cars
- Surveillance and access-control
What Do You See?

*CNN-F, proposed by Chatfield et al., “Return of the Devil”, BMVC ‘14
What Do You See Now?

The attacks generated following the method proposed by Szegedy et al.
The Difference
Is This an Attack?

Amplify × 3
Can an Attacker Fool ML Classifiers?

Fooling face recognition (e.g., for surveillance, access control)

- What is the attack scenario?
- Does scenario have constraints?
 - On how attacker can manipulate input?
 - On what the changed input can look like?

Defender / beholder doesn’t notice attack
(to be measured by user study)

Can change physical objects, in a limited way
Can’t control camera position, lighting

[Sharif, Bhagavatula, Bauer, Reiter CCS ’16, arXiv ’17, TOPS ’19]
Step #1: Generate Realistic Eyeglasses
Step #2: Generate Realistic Eyeglasses

Adversarial
Step #2: Generate Realistic Eyeglasses

[0..1] → Generator → Glasses

Face recognizer

Russell Crowe / Owen Wilson / Lujo Bauer / ...

CyLab Carnegie Mellon University Security and Privacy Institute
Are Adversarial Eyeglasses Inconspicuous?

... real / fake real / fake real / fake ...
Are Adversarial Eyeglasses Inconspicuous?

Most realistic 10% of physically realized eyeglasses are more realistic than average real eyeglasses.
Can an Attacker Fool ML Classifiers? (Attempt #2)
Fooling face recognition (e.g., for surveillance, access control)

• What is the attack scenario?
• Does scenario have constraints?
 • On how attacker can manipulate input?
 • On what the changed input can look like?

Defender / beholder doesn’t notice attack (to be measured by user study)
Considering Camera Position, Lighting

• Used algorithm to measure pose (pitch, roll, yaw)

• Mixed-effects logistic regression
 • Each 1° of yaw = 0.94x attack success rate
 • Each 1° of pitch = 0.94x (VGG) or 1.12x (OpenFace) attack success rate

• Varied luminance
 (add 150W incandescent light at 45°, 5 luminance levels)
 • Not included in training → 50% degradation in attack success
 • Included in training → no degradation in attack success
What If Defenses Are in Place?

- **Already:**
 - Augmentation to make face recognition more robust to eyeglasses
- **New:**
 - Train attack detector (Metzen et al. 2017)
 - 100% recall and 100% precision
 - Attack must fool original DNN and detector

- **Result** (digital environment): attack success unchanged, with minor impact to conspicuousness
Can *an Attacker* Fool ML Classifiers? (Attempt #2)

Fooling face recognition (e.g., for surveillance, access control)

- **What is the attack scenario?**
- **Does scenario have constraints?**
 - On how attacker can manipulate input?
 - On what the changed input can look like?

Defender / beholder doesn’t notice attack (to be measured by user study)

- Can change physical objects in a limited way
- Can’t control camera position, lighting

CyLab Carnegie Mellon University Security and Privacy Institute
Other Attack Scenarios?

Dodging: One pair of eyeglasses, many attackers?

Change to training process:

Train with multiple images of one user
→ train with multiple images of *many* users

Create multiple eyeglasses, test with large population
Other Attack Scenarios?

Dodging: One pair of eyeglasses, many attackers?

- 1 pair of eyeglasses, 50+% of population avoids recognition
- 5 pairs of eyeglasses, 85+% of population avoids recognition

Graph:
- x-axis: # of subjects trained on
- y-axis: Success rate (VGG143)
- Bars: # of eyeglasses used for dodging (1, 2, 5, 10)
- Legend: Cyan, Yellow, Red bars represent different numbers of eyeglasses.
Other Attack Scenarios? or Defense

Stop sign → speed limit sign [Eykholt et al., arXiv ‘18]
Other Attack Scenarios? or Defense

Stop sign → speed limit sign [Eykholt et al., arXiv ‘18]

Hidden voice commands [Carlini et al., ‘16-19]
 noise → “OK, Google, browse to evil dot com”

Malware classification [Suciu et al., arXiv ’18]
 malware → “benign”
Can an attacker fool ML classifiers?

Face recognition
Attacker goal: evade surveillance, fool access-control mechanism
Input: image of face
Constraints:
- Can’t precisely control camera angle, lighting, pose, ...
- Attack must be *inconspicuous*

Malware detection
Attacker goal: bypass malware detection system
Input: malware binary
Constraints:
- Must be functional malware
- Changes to binary must not be easy to remove

Very different constraints! ⇒ Attack method does not carry over
Hypothetical attack on malware detection

1. Must be functional malware
2. Changes to binary must not be easy to remove
Attack building block: Binary diversification

- Originally proposed to mitigate return-oriented programming [3,4]

- Uses transformations that preserve functionality:
 1. Substitution of equivalent instruction
 2. Reordering instructions
 3. Register-preservation (push and pop) randomization
 4. Reassignment of registers
 5. Displace code to a new section
 6. Add semantic nops

Example: Reordering instructions*

Original code:

```
mov    eax, [ecx+0x10]
push   ebx
mov    ebx, [ecx+0xc]
cmp    eax, ebx
mov    [ecx+0x8], eax
jle    0x5c
```

Reordered code:

```
push   ebx
mov    ebx, [ecx+0xc]
mov    eax, [ecx+0x10]
mov    [ecx+0x8], eax
cmp    eax, ebx
jle    0x5c
```

Dependency graph:

Example by Pappas et al.
Transforming malware to evade detection

Input: malicious binary x (classified as malicious)

Desired output: malicious binary x' that is misclassified by AV

For each function h in binary x
1. Pick a transformation
2. Apply transformation to function h to create binary x'
3. If x' is “more benign” than x, continue with x'; otherwise revert to x
Transforming malware to evade detection

Experiment: 100 malicious binaries, 3 malware detectors (80-92% TPR)

Success rate (success = malicious binary classified as benign):

Success rate for 68 commercial anti viruses (black-box):
Up to ~50% of AVs classify transformed malicious binary as benign

Transformed malicious binary classified as benign ~100% of the time
Can *an attacker* fool ML classifiers? **Yes**

Face recognition
Attacker goal: evade surveillance, fool access-control mechanism
Input: image of face
Constraints:
- Can’t precisely control camera angle, lighting, pose, ...
- Attack must be *inconspicuous*

Malware detection
Attacker goal: bypass malware detection system
Input: malware binary
Constraints:
- Must be functional malware
- Changes to binary must not be easy to remove
Some directions for defenses

- Know when not to deploy ML algs
- “Explainable AI” – help defender understand alg’s decision

Image courtesy of Matt Fredrikson
Some directions for defenses

- Know when not to deploy ML algs
- “Explainable” AI – help defender understand alg’s decision
 - Harder to apply to input data not easily interpretable by humans
- “Provably robust/verified” ML – but slow, works only in few cases
 - Test-time inputs similar to training-time inputs should be classified the same
 - ... but similarity metrics for vision don’t capture semantic attacks 😞
 - ... and in some domains similarity isn’t important for successful attacks
- Ensembles, gradient obfuscation, ... – help, but only to a point
Fooling ML Classifiers: Summary

• “Attacks” may not be meaningful until we fix context
 • E.g., for face recognition:
 • Attacker: physically realized (i.e., constrained) attack
 • Defender / observer: attack isn’t noticed as such

• Even in a practical (constrained) context, real attacks exist
 • Relatively robust, inconspicuous; high success rates

• Hard-to-formalize constraints can be captured by a DNN

• We need better definitions for similarity and correctness